Abstract

Excessive thiram residues in food have the potential to negatively impact human health. Hence, the development of a convenient and fast detection method is highly desirable. In this study, an efficient, repeatable, and sensitive surface-enhanced Raman scattering (SERS) active chip was manufactured via a low-cost colloidal lithography technique. The plasmonic structure was composed of a series of silver nanospheres and nanowires. Interestingly, this type structure creates a nanocavity space with a characteristic geometry generating a strong electromagnetic field coupling. The finite-different time-domain software was employed to simulate the electromagnetic field distribute on the nanocavity. Accordingly, SERS active chip that displays ultra-low concentration detection of thiram (10−11 M) was realized. Moreover, the excellent reproducibility of thiram (10−6 M) practical detection on an apple pericarp has great potential for application in food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.