Abstract

The extinction spectra and the electric field distributions of the cross-shaped nanostructures are calculated by the discrete dipole approximation method. Compared with the individual nanorod, the cross-shape nanostructure can generate high local electric fields at the lateral surface. Because of the electric field couplings between adjacent protruding parts, much enhanced electric fields always occur at the lateral surface of the cross-shape nanostructure, with the incident polarization direction varied. In addition, the effects of the structural parameters of the cross-shape nanostructures on their plasmonic properties are also investigated. These results would guide the preparation of the cross-shape nanostructures for their applications in surface enhanced Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.