Abstract

Plasmonic photodetectors are attracting the attention of the photonics community. Plasmonics is attractive because metallic structures have the ability to confine light by coupling an electromagnetic wave to charged carrier oscillations at the surface of the metal. The wavelength of such oscillations can be much smaller than the corresponding light wavelength in vacuum. This enables the light-matter interaction on a deep subwavelength scale, which in turn allows for more compact and potentially higher speed devices. In this review, we discuss different types of photodetectors and ways in which plasmonics can be applied to them. We elucidate several plasmonic photodetector concepts/schemes and discuss the main physical principles behind their operation. Finally, we reflect on the characteristics of an “ideal” photodetector and propose a device that might be the perfect plasmonic detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.