Abstract

AbstractA layer of silver nanoparticles created by thermal annealing of evaporated silver films can increase the photocurrents in silicon-on-insulator (SOI) devices by fivefold or more, but significant enhancements have been restricted to wavelengths greater than 800 nm. Here we report a significant enhancement of photoconductance at shorter wavelengths (500-750 nm) by using a monolayer of silver nanoparticles transferred from a colloidal suspension. Photocurrents on SOI increased in the 500-750 nm spectral range with the addition of silver nanoparticles, with enhancements more than two times; enhancements at longer wavelengths were small, in contrast to results with annealed silver films. We prepared similar colloidal silver nanoparticle monolayers layers on nanocrystalline silicon solar cells with conducting oxide top layers. There is an overall decrease in the quantum efficiency of these cells with the deposition of silver nanoparticles. We attribute these effects to the substantial substrate-mediated changes in the localized surface plasmon resonance frequencies of the differing nanoparticle configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call