Abstract

Due to their localized surface plasmon resonances in visible spectrum, noble metal nanostructures have been considered for improving the photoactivity of wide bandgap semiconductors. Improved photoactivity is attributed to localized surface plasmon relaxations such as direct electron injection and resonant energy transfer. However, the details on the plasmonic solar water splitting through near electromagnetic field enhancement have not been fully understood. Here, the authors report that shape-controlled gold nanoparticles on wide bandgap semiconductors improve the water-splitting photoactivity of the semiconductors with over-bandgap photon energies compared to sub-bandgap photon energies. It is revealed that hot hole injection into the oxygen evolution reaction potential is the rate-limiting step in plasmonic solar water splitting. The proposed concept of photooxidation catalysts derived from an ensemble of gold nanoparticles having sharp vertices is applicable to various photocatalytic semiconductors and provides a theoretical framework to explore new efficient plasmonic photoelectrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.