Abstract
Among the members of the rapidly growing nanozyme family, plasmonic nanozymes stand out because of their unique localized surface plasmon resonance (LSPR) characteristics and tunable catalytic activity. We prepared a plasmonic nanozyme of Au gold nanoparticles (AuNPs) and Cu metal-organic framework nanosheets (Cu-MOFNs). The Cu-MOFNs have peroxidase-like activity, while AuNPs present unique LSPR characteristics. We found that the as-prepared AuNPs/Cu-MOFNs composite presents 1.6-fold faster reaction kinetics under LSPR excitation compared to that in the dark. Investigations of energy levels, radical capture, and dark-field scattering spectroscopy revealed that LSPR of AuNPs as well as matched energy levels can facilitate efficient hot electron transfer, which could readily cleave the chemical bond of the substrate and accelerate the reaction kinetics. On the basis of these results, we achieved enhanced antibacterial therapy and wound healing using plasmonic AuNPs/Cu-MOFNs. This study spotlights the superiority of plasmonic nanozymes in improving the enzyme-like performance of nanozymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.