Abstract

We apply the layer-multiple-scattering method to study the optical properties of different plasmonic architectures; namely two- and three-dimensional periodic arrays of metallic nanocylinders and of metallodielectric nanosandwiches. These structures exhibit various types of collective plasmonic resonances, tunable over a broad spectral range from infrared to visible frequencies, which cause large enhancement of the local field and give rise to interesting phenomena that we discuss and provide a consistent interpretation of the underlying physics. We analyze extinction spectra of finite slabs of the structures under consideration and explain the different spectral features. In relation to optical metamaterials, we deduce effective electromagnetic parameters by the S-matrix retrieval procedure for single- and multi-layer slabs of periodic arrays of metallodielectric nanosandwiches and propose a method to resolve ambiguities in the determination of the effective refractive index, which become prominent for thick slabs, based on the complex band structure of the corresponding infinite crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.