Abstract

Molecular chirality recognition plays a pivotal role in chiral generation and transfer in living systems and makes important contribution to the development of diverse applications spanning from chiral separation to soft nanorobots. To detect chirality recognition, most of the molecular sensors described to date are based on the design and preparation of the host-guest complexation with chromophore or fluorophore at the reporter unit. Nevertheless, the involved tedious procedures and complicated chemical syntheses hamper their practical applications. Here, we report the plasmonically chiroptical detection of molecular chirality recognition without the need for a chromophore or fluorophore unit. This facile methodology is based on plasmonic nanotransducers that can convert molecular chirality recognitions occurring at nanoscale interfaces into asymmetrically amplified plasmonic circular dichroism readouts, enabling enantiospecific recognition and quantitative determination of the enantiomeric excess of small amino acids. Importantly, such a plasmon-based chirality sensing shows 102-103 amplification in the plasmonic circular dichroism signals from the detections of racemate and near-racemate of molecular analysts, demonstrating an extraordinary sensitivity to the host-guest enantioselective interactions. Furthermore, with advantages of easy-processing, cost-effective, and specific to interfacial molecular chirality, our chiroptical sensing scheme could hold considerable promise toward applications of enantioselective high-throughput screening in biology, stereochemistry, and pharmaceutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.