Abstract

In this work, Ag nanogratings comprised of arrays of nanostrips with three different cross sections of triangular, rectangular, and trapezoidal shape were considered and put at the top of the thin-film metal-insulator-metal (MIM) and semiconductor-on-insulator (SOI) solar cells. Then, the optical absorption and the short-circuit current density (JSC) enhancement (relative to a bare cell) were calculated and compared. In addition, the best strip cross section among three types of cross sections and the optimum grating period were found. The results showed that for the transverse electric (TE) mode, only the waveguide modes were excited inside the Si active layer with the assistance of Ag nanogratings. For the transverse magnetic (TM) mode, the waveguide as well as the localized surface plasmonic (LSP) modes were excited. The LSP modes, which were excited at the longer wavelengths centered on ∼600 nm, led to an additional and consequently a larger JSC enhancement. Finally, among the various types of plasmonic SOI and MIM solar cells, a SOI cell with a 300 nm grating period, comprised of rectangular nanostrips, showed a 40% enhancement in JSC, which is the highest possible value achieved in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.