Abstract

Owing to their ability to concentrate light on nanometer scales, plasmonic surface structures are ideally suited for on-chip functionalization with nonlinear or gain materials. However, achieving a high effective quantum yield across a surface requires not only strong light localization but also control over losses. Here, we report on a particular class of tunable low-loss metasurfaces featuring dense arrangements of nanometer-sized focal points on a photonic chip with an underlying waveguide channel. Guided within the plane, the photonic wave evanescently couples to the nanogaps, concentrating light in a lattice of hot-spots. In studying the energy transfer between photonic and plasmonic channels of single trimer molecules and triangular nanogap tilings in dependence on element size, we identify different regimes of operation. We show that the product of field enhancement, propagation length, and element size is close to constant in both the radiative and subwavelength regimes, opening pathways for device designs that combine high-field enhancements with large propagation lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.