Abstract
We demonstrate enhanced power conversion efficiency in organic photovoltaic (OPV) cells incorporated into a plasmonic nanocavity array. The nanocavity array is formed between a patterned Ag anode and an unpatterned Al cathode. This structure leads to the confinement of optical energy and enhanced absorption in the OPV. Devices characterized under simulated solar illumination show a 3.2-fold increase in power conversion efficiency compared to OPVs with unpatterned Ag anodes. The observed enhancement is also reflected in the external quantum efficiency, and the spectral response is consistent with optical finite-difference time-domain simulations of the structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.