Abstract

Optical beam carrying orbital angular momentum(OAM) exhibits profound potential in optical communications, micromanipulation and other related fields due to its helical wavefront. However, complex configuration of manipulating optical vortices have hindered the realization of nanophotonic systems. Recently, owing to the ultrathin structure, plasmonic metasurfaces based on abrupt phase shift have aroused appreciable interest. In this paper, we introduce a multifunctional device that integrates a focusing apparatus and an orbital angular momentum generator by the use of the plasmonic metasurfaces. This metasurface combining Archimedean spirals and spatially variant nanoslits achieves plasmonic focusing and an optical needle in the near- and far-field, respectively. Moreover, generation of optical vortex beams is shown in the far- and near-field simultaneously, where light field can be arbitrarily manipulated. We expect this work to have further applications in integrated photonic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.