Abstract

To investigate the potential for dense integration of photonic components, we analyse passive plasmonic/metallic waveguides and waveguide components at optical frequencies by using mostly microwave engineering approaches. Four figures of performance are formulated that are utilised to compare the characteristics of four different slab waveguides with zero frequency cut-off modes. Three of these are metallic based whereas the fourth one, which also serves as a reference, is dielectric based with high index-contrast. It is found that all figures of performance cannot be optimised independently; in particular there is a trade-off between the waveguide Q-value and the transversal field confinement. Microwave methods are used to design several photonic transmission line components. The small Q-value of the metallic waveguides is the main disadvantage when using materials and telecom frequencies of today. Hence plasmonic waveguides do not offer full functionality for some important integrated components, being severe for frequency-selective applications. To achieve a dense integration, it is concluded that new materials are needed that offer Q-values several orders of magnitude higher than metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.