Abstract

Magnesium is a rising alternative plasmonic metal that is potentially cheaper, more biocompatible, and less lossy in the ultraviolet-blue region of the visible spectrum than the commonly used gold and silver. Recent studies of colloidal magnesium nanoparticles demonstrated the plasmonic resonances of a variety of faceted shapes. However, applications such as refractive index sensing benefit from well-defined arrays, which have been developed for all other plasmonic metals. Here, we implement nanosphere lithography to fabricate metallic magnesium arrays that display attractive plasmonic properties. The deposition process was found to be highly vulnerable to oxidation, recrystallization, kinetic energy of the metal vapor, and substrate properties. The resulting structures obtained with 350, 500, and 750 nm hexagonally packed nanosphere masks exhibit the hallmark light–matter interactions of plasmonic metals, including strong extinction and resonance energy dependence on feature size, further securing Mg’s place as an alternative plasmonic metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.