Abstract
An attractive field of plasmon-mediated chemical reactions (PMCRs) is developing rapidly, but there is still incomplete understanding of how to control the kinetics of such a reaction related to hot carriers. Here, we chose 8-bromoadenine (8BrAd) as a probe molecule of hot electrons to investigate the influence of the electrode potential, laser wavelength, and power on the PMCR kinetics on silver nanoparticle-modified silver electrodes. Plasmonic hot electron-mediated cleavage of the C-Br bond in 8BrAd has been investigated by combining in situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations. The experimental and theoretical results reveal that the energy position of plasmon relaxation-generated hot electrons can be modulated conveniently by applied potentials and laser light. This allows the proposal of a mechanism of modulating the matching energy of the hot electron of plasmon relaxation to promote the efficiency of PMCRs in electrochemical interfaces. Our work will be helpful to design surface plasmon resonance photoelectrochemical reactions on metal electrode surfaces of nanostructures with higher efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.