Abstract

Realization of smaller and faster coherent light sources is critically important for the emerging applications in nanophotonics and information technology. Semiconductor lasers are arguably the most suitable candidate for such purposes. However, the minimum size of conventional semiconductor lasers utilizing dielectric optical cavities for sustaining laser oscillation is ultimately governed by the diffraction limit (∼(λ/2n)(3) for three-dimensional (3D) cavities, where λ is the free-space wavelength and n is the refractive index). Here, we demonstrate the 3D subdiffraction-limited laser operation in the green spectral region based on a metal-oxide-semiconductor (MOS) structure, comprising a bundle of green-emitting InGaN/GaN nanorods strongly coupled to a gold plate through a SiO(2) dielectric nanogap layer. In this plasmonic nanocavity structure, the analogue of MOS-type "nanocapacitor" in nanoelectronics leads to the confinement of the plasmonic field into a 3D mode volume of 8.0 × 10(-4) μm(3) (∼0.14(λ/2n)(3)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.