Abstract

Recent years have seen increased interest in the plasmonic enhancement of nonlinear optical effects, yet there remains an uncertainty as to the limits of this enhancement. We present a simple and physically transparent theory for the plasmonic enhancement of third order nonlinear optical processes and show that while a huge enhancement of the effective nonlinear index can be attained, the most relevant figure of merit, the phase shift per one absorption length, remains very low. This suggests that while nonlinear plasmonic materials are not suitable for applications requiring high efficiency, for example in all-optical switching and wavelength conversion, they can be very useful for applications where overall high efficiency is not critical, such as in sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.