Abstract

Ultrasensitive surface-enhanced Raman spectroscopy (SERS) still faces difficulties in quantitative analysis because of its susceptibility to local optical field variations at plasmonic hotspots in metallo-dielectric nanostructures. Current SERS calibration approaches using Raman tags have inherent limitations due to spatial occupation competition with analyte molecules, spectral interference with analyte Raman peaks, and photodegradation. Herein, we report that plasmon-enhanced electronic Raman scattering (ERS) signals from metal can serve as an internal standard for spatial and temporal calibration of molecular Raman scattering (MRS) signals from analyte molecules at the same hotspots, enabling rigorous quantitative SERS analysis. We observe a linear dependence between ERS and MRS signal intensities upon spatial and temporal variations of excitation optical fields, manifesting the |E|4 enhancements for both ERS and MRS processes at the same hotspots in agreement with our theoretical prediction. Furthermore, we find that the ERS calibration's performance limit can result from orientation variations of analyte molecules at hotspots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.