Abstract

Rational design of plasmonic colloidal assemblies via bottom-up synthesis is challenging but would show unprecedented optical properties that strongly relate to the assembly's shape and spatial arrangement. Herein, the synthesis of plasmonic cyclic Au nanosphere hexamers (PCHs) is reported, wherein six Au nanospheres (Au NSs) are connected via thin metal ligaments. By tuning Au reduction, six dangling Au NSs are interconnected with a core hexagon nanoplate (NPL). Then, Pt atoms are selectively deposited on the edges of thespheres. After etching of the core, necklace-like nanostructures of Pt framework are obtained. Deposition of Au is followed, leading to PCHs in high yield (≈90%). Notably, PCHs exhibit the combinatorial plasmonic characteristics of individual Au NSs and the in-plane coupling of the six linked Au NSs. They yield highly uniform, reproducible, and polarization-independent single-particle surface-enhanced Raman scattering signals, which are attributed to the 2-dimensional isotropic alignment of the Au NSs. Those are applied to a SERS-based immunoassay as quantitative and qualitative single particle SERS nanoprobes. This assay shows a low limit-of-detection, down to 100pm, which is orders of magnitude lower than those based on Au NSs, and one order of magnitude lower than an assay using analogous particles of smooth Au nanorings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call