Abstract

We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.