Abstract
We study the chiral optical properties of one-dimensional arrays of plasmonic twisted nanorod dimers. By using finite-difference time-domain (FDTD) simulation and analytical approach based on the coupled dipole model, we have revealed unusual chiral optical responses due to the cooperation of local structure and collective effect. It is found that one-dimensional arrays of achiral unit may show chiral optical responses. Moreover, besides the classical bisignate lineshape of circular dichroism (CD) induced by localized surface plasmon resonance, a new CD peak/dip appears, originating from Wood anomaly. Near the Wood anomaly frequency, the optimal twist angle to achieve the highest CD has been shifted compared with that of single twisted nanorod dimer. The universal geometric configurations of the strongest chiral optical responses have been found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.