Abstract

Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call