Abstract
Geometric diodes represent a relatively new class of diodes used in rectennas that rely on the asymmetry of a conducting thin film. Here, we numerically investigate a plasmonic analogue of geometric diodes to realize nanoscale optical asymmetric transmission. The device operates based on spatial symmetry breaking that relies on a unique property of surface plasmon polaritons (SPPs), namely, adiabatic nanofocusing. We show that the structure can realize on-chip asymmetric electromagnetic transmission with a total dimension of ∼2µm×6µm. We demonstrate a signal contrast of 0.7 and an asymmetric optical transmission ratio of 4.77 dB. We investigate the origin of the asymmetric transmission and show that it is due mainly to asymmetric out-coupling of SPPs to far-field photons. We highlight the role of evanescent field coupling of SPPs in undermining the asymmetric transmission efficiency and show that by adjusting the plasmonic waveguide dimensions, a signal contrast of 0.94 and an asymmetric optical transmission ratio of 5.18 dB can be obtained. Our work presents a new paradigm for on-chip nanoscale asymmetric optical transmission utilizing the unique properties of SPPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.