Abstract

Nanoplasmonic devices are promising for next generation information and communication technologies because of their capability to confine light at subwavelength scale and transport signals with ultrahigh speeds. However, ohmic losses are inherent to all plasmonic devices so that further development of integrated plasmonics requires efficient in situ loss compensation of signals with a wavelength and polarization of choice. Here we show that CdSe nanobelt/Al2O3/Ag hybrid plasmonic waveguides allow for efficient broadband loss compensation of propagating hybrid plasmonic signals of different polarizations using an optical pump and probe technique. With an internal gain coefficient of 6755 cm−1 at ambient condition, almost 100% of the propagation loss of TM-dominant plasmonic signals is compensated. From comparison with a similar photonic structure we attribute the fast-increasing gain at low pump intensity in hybrid plasmonic waveguides to the transfer across the metal-oxide-semiconductor interface of ‘hot' electrons photogenerated by the pump light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.