Abstract

Developing plasmon‐enhanced fluorescence (PEF) technology for identifying important biological molecules has a profound impact on biosensing and bioimaging. However, exploration of PEF for biological application is still at a very early stage. Herein, novel PEF‐based core–shell nanostructures as a near‐infrared fluorescent turn‐on sensor for highly sensitive and selective detection of pyrophosphate (PPi) in aqueous solution are proposed. This nanostructure gold nanorod (AuNR)@SiO2@meso‐tetra(4‐carboxyphenyl) porphyrin (TCPP) contains a gold nanorod core with an aspect ratio of 2.3, a silica shell, and TCPP molecules covalently immobilized onto the shell surface. The silica shell is employed a rigid spacer for precisely tuning the distance between AuNR and TCPP and an optimum fluorescence enhancement is obtained. Due to the quenching effect of Cu2+, the copper porphyrin (TCPP‐Cu2+) results in a weak fluorescence. In the presence of PPi, the strong affinity between Cu2+ and PPi can promote the disassembly of the turn‐off state of TCPP‐Cu2+ complexes, and therefore the fluorescence can be readily restored. By virtue of the amplified fluorescence signal imparted by PEF, this nanosensor obtains a detection limit of 820 × 10−9m of PPi with a good selectivity over several anions, including phosphate. Additionally, the potential applicability of this sensor in cell imaging is successfully demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.