Abstract

Plasmonic catalysis is a sustainable catalytic process to drive the conventional catalytic reactions under ambient conditions by solar energy. Here, we report a porous carbon nanosphere-supported bimetallic nanocatalyst (Pd-Au/MCN) which exhibits upgraded performance in the oxidation of alcohol under irradiation of light compared to the conventional heating processes and the single metal catalysts (Pd/MCN). The Pd-Au bimetallic nanocatalyst combines photo-active Au nanoparticles, reaction-active Pd nanoparticles, and solar-adsorbing carbon nanospheres. Compared to the alcohol oxidation on Pd/MCN catalyst, Pd-Au/MCN catalyst exhibits almost 5 times higher catalytic activities in the oxidation of 2-Phenylethan-1-ol and 1-Phenylethan-1-ol, and 3 times higher activities in the oxidation of cinnamyl alcohol and 3-methoxybenzyl alcohol under light irradiation at 30 °C in water in the absence of a base. Moreover, the bimetallic nanocatalysts were able to be recovered and recycled 5 times without any obvious loss in catalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.