Abstract

The TM and TE guided modes in the coupled plasmon-waveguide resonance configuration are investigated in the spectral domain. Here we use the modes dispersion to study their capability for sensing in the near infrared region. It is shown that the spectral widths of the guided modes are, at least, one order of magnitude smaller than the conventional surface plasmon resonance counterpart. The enhanced sensitivity and figure of merit of the guided modes reveal their potential for sensing in the spectral interrogation method where the traditional configurations are inherently limited. Moreover, the high resolution associated with the narrow resonances and the polarization dependence make these modes very promising for anisotropic biosensing in the spectral interrogation approach. The extremely high figure of merit, large penetration depth, and propagation distance in the near infrared region open the possibility of combining the plasmon-waveguide configuration with absorption spectroscopy techniques for molecular recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.