Abstract
AbstractPlasmon resonances in nanopatterned single‐layer graphene nanoribbons (SL‐GNRs), double‐layer graphene nanoribbons (DL‐GNRs) and triple‐layer graphene nanoribbons (TL‐GNRs) are studied experimentally using ‘realistic’ graphene samples. The existence of electrically tunable plasmons in stacked multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL‐GNRs when compared to SL‐GNRs. However, further increase was not observed in TL‐GNRs when compared to DL‐GNRs. We carried out systematic full‐wave simulations using a finite‐element technique to validate and fit experimental results, and extract the carrier‐scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet. We conclude with our perspective of the key bottlenecks in both experiments and theoretical models. image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.