Abstract
Graphene-based photodetectors have attracted much attention due to their unique properties, such as high-speed and wide-band detection capability. However, they suffer from very low external quantum efficiency in the infrared (IR) region and lack spectral selectivity. Here, we construct a plasmon-enhanced macro-assembled graphene nanofilm (nMAG) based dual-band infrared silicon photodetector. The Au plasmonic nanostructures improve the absorption of long-wavelength photons with energy levels below the Schottky barrier (between metal and Si) and enhance the interface transport of electrons. Combined with the strong photo-thermionic emission (PTI) effect of nMAG, the nMAG–Au–Si heterojunctions show strong dual-band detection capability with responsivities of 52.9 mA/W at 1342 nm and 10.72 mA/W at 1850 nm, outperforming IR detectors without plasmonic nanostructures by 58–4562 times. The synergy between plasmon–exciton resonance enhancement and the PTI effect opens a new avenue for invisible light detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.