Abstract

The atomic-scale mechanism of plasmon-mediated H2 dissociation on gold nanoclusters is investigated using time-dependent density functional theory. The position relationship between the nanocluster and H2 has a strong influence on the reaction rate. When the hydrogen molecule is located in the interstitial center of the plasmonic dimer, the hot spot here has a great field enhancement, which can promote dissociation effectively. The change in the molecular position results in symmetry breaking, and the molecular dissociation is inhibited. For the asymmetric structure, direct charge transfer from the gold cluster to the antibonding state of the hydrogen molecule by plasmon decay makes a prominent contribution to the reaction. The results provide deep insights into the influence of structural symmetry on plasmon-assisted photocatalysis in the quantum regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call