Abstract

In order to reduce the size of the device and realize the ultrafast response time and dynamic tunableness, the single-band and dual-band plasmon induced transparency (PIT) effect are investigated based on graphene nanoribbon waveguide side-coupled rectangle cavity. The slow light properties of the model are analyzed numerically and theoretically by coupled mode theory and finite difference time domain method. With controlling the chemical potential of the graphene rectangle cavity, the tunability of the resonant wavelength and the transmission peak can be achieved simultaneously in single-band and dual-band PIT model. As the chemical potential of graphene increases, the resonant wavelength of each transmission window of PIT effect decreases gradually and presents the blue shift. In addition, through dynamically tuning the resonant wavelength of the graphene rectangle cavity, when the chemical potential of the graphene rectangle cavity increases from 0.41 to 0.44 eV, the group index of single PIT system is controlled to be between 79.2 and 28.3, and the tunable bandwidth is 477 nm. Moreover, the group index of dual PIT system is controlled to be between 143.2 and 108.6 when the chemical potentials of graphene rectangle cavities 1, 2, and 3 are 0.39–0.42 eV, 0.40–0.43 eV, and 0.41–0.44 eV, respectively. The size of the entire PIT structure is <0.5 μm<sup>2</sup>. The research results here in this work are of reference significance in designing and fabricating the optical sensors, optical filters, slow light and light storage devices with ultrafast, ultracompact and dynamic tunableness.

Highlights

  • In order to reduce the size of the device

  • effect are investigated based on graphene nanoribbon waveguide side-coupled rectangle cavity

  • here in this work are of reference significance

Read more

Summary

Intrinsic quality factor

式中, 石墨烯与电极之间的厚度 dsub = 300 nm, Vg 为施加的偏置电压, e0 为真空的介电常数, ed 为介 质硅的相对介电常数. Schematic diagram of realizing principle of single PIT effect. 式中, c 为真空中的光速, vg 为群速度, l 为 PIT 系 统的长度, 这里, l = 0.8 μm. 本文采用时域有限差分 (finite difference time domain, FDTD) 法仿真确定 Q 值, 仿真的时间精 度为 3000 fs, 空间精度为 0.1 nm, 单层石墨烯厚 度方向的网格均匀设置为 0.2 nm (1 nm 厚度包含 5 层), 其他的仿真区域设置为非均匀网格, 采用完 美匹配层边界条件吸收输出光波. 当石墨烯矩形 腔 1 和 2 的化学势分别设置为 0.40 和 0.44 eV 时, FDTD 仿真得到矩形腔 1 和 2 的谐振波长分别为 6650 和 5983 nm, 由图 2 可知, 腔 1 和腔 2 的本征 Q 值分别为 113.7 和 126.2. FDTD 仿真得到 Qt 为 19.1, 因此可以得到腔 1 和腔 2 的耦合 Q 值分别 为 23.1 和 22.5. 采用耦合模式方程数值计算和 FDTD 仿真分 析 PIT 效应的透射光谱, 数值计算结果很好地符 合了 FDTD 仿真结果. 采用耦合模式方程数值计算和 FDTD 仿真分 析 PIT 效应的透射光谱, 数值计算结果很好地符 合了 FDTD 仿真结果. 由图 4(a1)—图 4(d1) 可知, 随着石墨烯化学势的增加, 石墨烯矩形谐振腔 2 的 谐振波长蓝移, 波长失谐量增加, PIT 效应透明窗 口带宽变宽, 可调谐带宽为 477 nm, 并且 PIT 效 应透射峰值变大. 当石墨烯的化学势为 0.41 eV 时, PIT 效应透射峰值小, 仅为 10%, 如图 4(a1) 所示; 当石墨烯的化学势为 0.44 eV 时, PIT 效应透射峰 值达到 62%, 如图 4(d1) 所示, 这表明, 通过改变石 墨烯矩形腔的化学势能够有效地调节 PIT 效应

Group index
Coupled mode theory
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call