Abstract

In Forster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole–dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength direction to induce charge separation in a semiconductor. Plasmon-induced resonance energy transfer (PIRET) differs from FRET because of the lack of a Stoke's shift, non-local absorption effects and a strong dependence on the plasmon's dephasing rate and dipole moment. PIRET non-radiatively transfers energy through an insulating spacer layer, which prevents interfacial charge recombination losses and dephasing of the plasmon from hot-electron transfer. The distance dependence of dipole–dipole coupling is mapped out for a range of detuning across the plasmon resonance. PIRET can efficiently harvest visible and near-infrared sunlight with energy below the semiconductor band edge to help overcome the constraints of band-edge energetics for single semiconductors in photoelectrochemical cells, photocatalysts and photovoltaics. Plasmon-induced resonance energy transfer is revealed and explored for solar energy harvesting from visible and near-infrared light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.