Abstract
The Ag/AgI/Bi2WO6photocatalysts were successfully synthesized by deposition-precipitation and photoreduction methods. The catalyst showed high and stable photocatalytic activity for the degradation of the RhB under visible light irradiation (λ>400 nm). On the basis of a new plasmonic photocatalytic mechanism, the photogenerated electron-hole pairs are formed in Ag nanoparticles (NPs) due to surface plasmon resonance under visible-light irradiation. Then, the photoexcited electrons at the Ag NPs are injected into AgI. On the other hand, the band position shows that AgI and Bi2WO6have the matching band potentials in the AgI/Bi2WO6heterostructure composites. So the photoexcited electrons is ultimately transfer to the Bi2WO6conduction band (CB), photo-induced holes (hVB+) is transfer to the AgI valence band (VB) and the simultaneous transfer to compensative electrons from I-to the Ag NPS. This the result indicates that the high photosensitivity of noble metal Ag NPs due to surface plasmon resonance, which is not only improve the photocatalytic performance, but also offer a new idea for preparation of new photocatalysts .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.