Abstract

Using time-dependent density functional theory calculations, we have investigated the generation of hot carriers (HCs) in a system comprising a pyridine molecule and a tetrahedral Au20 plasmonic cluster. Our findings indicate that the decay of the localized surface plasmon resonance (LSPR) induced in the pyridine@Au20 system by a laser pulse facilitates the direct transfer of hot electrons from the occupied states of the Au20 cluster to the unoccupied molecular orbitals of pyridine. Notably, we have identified that the interparticle gap distance between the Au20 cluster and the pyridine molecule plays a critical role in controlling the generation of HCs. By precisely controlling the interaction between the plasmonic cluster and the molecule, we can effectively manipulate the energy distribution of the generated HCs. These insights have the potential to drive advancements in the development of more efficient systems for plasmonic catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.