Abstract

The recent development of plasmonics has break through the optical diffraction limit and realized ultracompact nanolasers that can directly generate coherent optical fields at the nanometre scale. However, it remains to a profound understanding on the light and matter interactions in so-called Spaser, especially on the coupling mechanism between the surface plasmon and exciton although many reports have claimed surface plasmonic lasers. Here, we demonstrated a ZnO/SiO2/Ag structural hybrid plasmonic nanolaser and compared with a conventional photonic laser systematically. We proposed that these two kinds of lasers originated from the entirely different optical gain mechanisms, and resulted in the generation of lasing mode shift. Time-resolved spectra collected from these two samples at room temperature presented the dynamic process of exciton recombination and revealed the energy-transfer from excitons to SPs. Our research provides an important theoretical and experimental basis for the practical applicat...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call