Abstract

We present the numerical and experimental demonstration of plasmonic Bragg filters and resonators inside metal-insulator-metal (MIM) waveguides. The presented filters and resonators are fabricated using standard top down lithography methods. The optical bandgap of the integrated Bragg filters is experimentally observed and its optical properties are investigated as a function of the grating pitch and the number of grating periods. Transmission filters based on a nanocavity resonance were measured, obtaining Q-factors above 30. Tuning of the cavity wavelength was experimentally achieved by varying the cavity length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.