Abstract

We study ‘ the excitation of plasmons due to the incidence of a fast charged particle that passes through a single-wall carbon nanotube. We use a quantized hydrodynamic model, in which the σ and π electron systems are depicted as two interacting fluids moving on a cylindrical surface. Calculations of the average number of the excited plasmons and the corresponding energy loss probability for the swift electrons are compared with several experimental results for electron energy loss spectra recorded using transmission electron microscopes. We are able to identify the π and σ + π plasmon peaks and elucidate the origin of various spectral features observed in different experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.