Abstract

Metallic nanoparticles showing localized surface plasmon resonance (LSPR) are efficient elements in the localization of light to nanometer-scale regions and enhance the light–matter interaction. We show that gold nanoisland (Au–NI)-loaded titanium dioxide (TiO2) photoelectrodes exhibited plasmon-enhanced photocurrent generation in the visible wavelength region, and the photocurrent action spectrum was corresponding to the LSPR band. The photocurrent enhancement may result from the plasmon-assisted electron transfer reaction from Au–NI to TiO2. A hole with high oxidation ability was left at the TiO2 surface states near the Au-NIs/TiO2 interface, which has the potential for photocatalytic water oxidation. The photocurrent generation efficiency of Au-NIs/TiO2 photoelectrode is highly dependent on the annealing temperature for the preparation of Au-NIs. High-resolution transmission electron microscopy and electron energy-loss spectroscopy analyses show that the interfacial structure between Au–NI and TiO2 plays a crucial role in the photocurrent generation efficiency and photocatalytic ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.