Abstract

We theoretically investigate the enhancement of Kerr nonlinearity through anisotropic Purcell factors provided by plasmon nanostructures. In a three-level atomic system with crossing damping, larger anisotropism of Purcell factors leads to more enhanced Kerr nonlinearity in electromagnetically induced transparency windows. While for fixed anisotropic Purcell factors, Kerr nonlinearity with orthogonal dipole moments increases with the decrease of its crossing damping, and Kerr nonlinearity with nonorthogonal dipole moments is very sensitive to both the value of crossing damping and the orientation of the dipole moments. We design the non-resonant gold nanorods array, which only provides subwavelength-confined anisotropic Purcell factors, and demonstrate that the Kerr nonlinearity of cesium atoms close to the nanorods array can be modulated at the nanoscale. These findings should have potential application in ultracompact quantum logic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call