Abstract

AbstractHigh harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.