Abstract
Clinical trials confirm the combination of indoleamine 2,3-dioxygenase (IDO) blockade and immunogenic chemotherapy represents a brilliant future in cancer therapy. However, it remains challenging to precisely activate chemo-immunotherapy in situ to avoid side effects from the systemic administrations and reverse the poor immunogenicity and immunosuppressive microenvironment in tumor sites. Herein, a hybrid nanomedicine ("RPMANB NPs") to co-deliver an IDO inhibitor (NLG919) and a chemotherapeutic prodrug to amplify the therapeutic benefits are designed. Attributed to the delicate surface engineering, the RPMANB NPs possess excellent pharmacokinetics and tumor accumulation. The loaded NLG919 are released inside cancer tissues/cells due to the collapse of the metal-organic framework platform triggered by the highly concentrated phosphate, reversing the immunosuppressive tumor microenvironment by suppressing IDO activity. The potent chemotherapeutic drug is precisely activated through a highly efficient plasmon-driven catalysis in the presence of near-infrared light, eliciting antitumor immunity by triggering immunogenic cell death and avoiding side effects through in situ activation of chemotherapy. In vivo studies demonstrate that the chemo-immunotherapy greatly suppresses the tumor growth by promoting intratumoral accumulation of cytotoxic T lymphocytes and downregulating regulatory T cells. This work establishes a robust delivery platform to overcome the current obstacles of tumor treatments by combining precisely activatable chemotherapy with immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.