Abstract

We study the dispersion properties of electron plasma waves, or plasmons, which can be excited in quantum plasmas in the nonlinear regime. In order to describe nonlinear electron response to finite amplitude plasmons, we apply the Volkov approach to nonrelativistic electrons. For that purpose, we use the Schrödinger equationand describe the electron population of a quantum plasma as a mixture of quantum states. Within the kinetic framework that we are able to derive from the Volkov solutions, we discuss the role of the wave amplitude on the nonlinear plasma response. Finally, we focus on the quantum properties of nonlinear Landau damping and study the contributions of multiplasmon absorption and emission processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.