Abstract

In this study, an effective oxygen vacancy (Ov)-involved luminol-dissolved oxygen (O2) electrochemiluminescence (luminol-DO ECL) system was developed and exploited for ECL sensing applications through significant plasmon enhancement of the Ov-involved weak luminol-DO ECL signals by the combined use of Cu-doped TiO2 oxygen vacancy and a Au@SiO2 nanomembrane. The results disclosed that the ECL response of the corresponding system could be synergistically boosted, and the plausible underlying mechanism has been discussed. Furthermore, for the first time, the developed system has been successfully applied for the highly sensitive detection of alkaline phosphatase with a low limit of detection of 0.005 U/L, with an excellent linear range from 0.005 to 10 U/L, as well as good stability and reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.