Abstract

High-energy collective electronic excitations (plasmons) in freestanding multilayer graphene are studied by momentum-resolved electron energy-loss spectroscopy (EELS). For normal incidence, only the high-energy plasmon band is excited and we measure a blueshift of the π -plasmon dispersion with increasing thickness. The observed transition between two-dimensional and three-dimensional behavior is explained using a layeredelectron-gas (LEG) model. We propose a method to measure all individual plasmon bands by tilting the sample with respect to the electron beam. As a proof of concept, EELS experiments for three-layer graphene are compared with predictions from the LEG model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.