Abstract

We report the deposition of single atom nickel catalyst on refractory plasmonic titanium nitride (TiN) nanomaterials supports using the wet synthesis method under visible light irradiation. TiN nanoparticles efficiently absorb visible light to generate photoexcited electrons and holes. Photoexcited electrons reduce nickel precursor to deposit Ni atoms on TiN nanoparticles’ surface. The generated hot holes are scavenged by the methanol. We studied the Ni deposition on TiN nanoparticles by varying light intensity, light exposure time, and metal precursor concentration. These studies confirmed the photodeposition method is driven by hot electrons and helped us to find optimum synthesis conditions for single atoms deposition. We characterized the nanocatalysts using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). We used density functional theory (DFT) calculations to predict favorable deposition sites and aggregation energy of Ni atoms on TiN. Surface defect sites of TiN are most favorable for single nickel atoms depositions. Interestingly, the oxygen sites on native surface oxide layer of TiN also exhibit strong binding with the single Ni atoms. Plasmon enhanced synthesis method can facilitate photodeposition of single atom catalysts on a wide class of metallic supports with plasmonic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.