Abstract
Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.
Highlights
Plasmodium vivax is the major cause of malaria outside Africa, mainly affecting Asia and the Americas
Among the different proteins PvETRAMP and P.vivax merozoite surface protein7 (PvMSP7) were identified as interacting partner for PvTRAg36.6 and PvTRAg56.2 respectively, after bacterial two hybrid screening
Same two antigens were identified by immunoprecipitation analysis of transgenic P. falciparum parasites expressing PvTRAg36.6-GFP and PvTRAg56.2-GFP fusion proteins using anti-GFP antibody followed by LC-MS/MS (S2 Table)
Summary
Plasmodium vivax is the major cause of malaria outside Africa, mainly affecting Asia and the Americas. Increasing cases of severe disease including cerebral malaria and deaths associated with P.vivax have challenged the conventional thought that this parasite is capable of causing only non fatal mild disease. Despite large burden of the disease, P.vivax is neglected due to absence of continuous in vitro culture system and the low parasitemias associated with natural infections [1]. Due to technical problems associated with P.vivax, existing research efforts have largely focused on P.falciparum; reports of characterized proteins. Diverse Roles for P.vivax Tryptophan-Rich Proteins analysis, decision to publish or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.