Abstract

BackgroundMajor gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity.Methodology/Principal findingsWe assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c) to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001), whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034), or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38). Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49–0.82, P<0.001) antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63–0.73, P = 0.008–0.041) and IgG1 (IRR 0.56–0.69, P = 0.001–0.035) to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure.Conclusion/SignificanceThese results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in clinical immunity against P. vivax are now required to confirm the potential of the reticulocyte-binding PvRBP2b and PvRBP1a as vaccine candidate antigens.

Highlights

  • The two major malaria parasites, Plasmodium falciparum and Plasmodium vivax, differ in their ability to invade human erythrocytes

  • These results demonstrate a diversity of erythrocyte-binding phenotypes of P. vivax Reticulocyte-Binding Protein family (PvRBP), indicating binding to both reticulocyte-specific and normocyte-specific ligands

  • We measured antibody levels to all six PvRBPs in a cohort of young Papua New Guinean children, assessing the relationship between antibodies to PvRBPs and risk of malaria disease. Both total and specific antibody subclass levels (IgG1 and IgG3) to the reticulocytespecific binder PvRBP2b, and the non-specific binder PvRBP1a were strongly associated with lower risk of clinical disease

Read more

Summary

Introduction

The two major malaria parasites, Plasmodium falciparum and Plasmodium vivax, differ in their ability to invade human erythrocytes. While P. falciparum invades both mature (normocytes) and young erythrocytes (reticulocytes), P. vivax can only invade the latter [1]. This differential specificity is believed to be mediated by distinct ligand-receptor interactions, though the exact mechanisms remain to be elucidated [1]. The presence of DARC in both normocytes and reticulocytes does not explain the restricted host-cell selectivity of P. vivax. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call