Abstract

BackgroundPlasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India. Compared with P. falciparum, P. vivax is difficult to eradicate because of its tendency to cause relapses, which impacts treatment and control strategies. The genetic diversity of these parasites, particularly of the merozoite surface protein-3 alpha (msp-3α) gene, can be used to help develop a potential vaccine. The present study aimed to investigate the genetic diversity of P. vivax using the highly polymorphic antigen gene msp-3α and to assess the suitability of using this gene for population genetic studies of P. vivax isolates and was carried out in 2004–06. No recent study has been reported for MSP 3α in the recent decade in India. Limited reports are available on the genetic diversity of the P. vivax population in India; hence, this report aimed to improve the understanding of the molecular epidemiology of the parasite by studying the P. vivax msp-3α (Pvmsp-3α) marker from P. vivax field isolates from India.MethodsField isolates were collected from different sites distributed across eight states in India. A total of 182 blood samples were analysed by a nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the HhaI and AluI restriction enzymes to determine genetic msp-3α variation among clinical P. vivax isolates.ResultsBased on the length variants of the PCR products of Pvmsp-3α gene, three allele sizes, Type A (1.8 kb), Type B (1.5 kb) and Type C (1.2 kb) were detected among the 182 samples. Type A PCR amplicon was more predominant (75.4 %) in the samples compared with the Type B (14.3 %) and Type C (10.0 %) polymorphisms. Among all of the samples analysed, 8.2 % were mixed infections detected by PCR alone. Restriction fragment length polymorphism (RFLP) analysis involving the restriction enzymes AluI and HhaI generated fragment sizes that were highly polymorphic and revealed substantial diversity at the nucleotide level.ConclusionsThe present study is the first extensive study in India using the Pvmsp-3α marker. The results indicated that Pvmps-3α, a polymorphic genetic marker of P. vivax, exhibited considerable variability in infection prevalence in field isolates from India. Additionally, the mean multiplicity of infection observed at all of the study sites indicated that P. vivax is highly diverse in nature in India, and Pvmsp-3α is likely an effective and promising epidemiological marker.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1524-y) contains supplementary material, which is available to authorized users.

Highlights

  • Plasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India

  • Pvmsp3-α exhibited a high level of genetic diversity among the field isolates collected from the different study areas

  • polymerase chain reaction (PCR) analyses of the isolates from the eight different sites in India revealed the presence of three variants of different lengths: Type A (1.8 kb), Type B (1.4 kb) and Type C (1.2 kb), which were observed in isolates from across the study sites, and Type A variant among the isolates was the most prevalent (Table 1)

Read more

Summary

Introduction

Plasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India. Limited reports are available on the genetic diversity of the P. vivax population in India; this report aimed to improve the understanding of the molecular epidemiology of the parasite by studying the P. vivax msp-3α (Pvmsp-3α) marker from P. vivax field isolates from India. In India, high endemicity in conjunction with the dense population contributes to the burden of vivax malaria, leading to vast social and economic consequences. Recent reports indicated equal prevalence of both P. vivax and P. falciparum in India [14]. Investigating the parasite population structure for genetic polymorphisms could aid in understanding the role of genetic diversity in malaria transmission [16] and is essential for the control and elimination of malaria [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call