Abstract

Plasmodium oocysts develop on the abluminal side of the mosquito midgut in relatively small numbers. Oocysts possess an extracellular cell wall—the capsule—to protect them from the insect's haemolymph environment. To further maximise transmission, each oocyst generates hundreds of sporozoites through an asexual multiplication step called sporogony. Completion of transmission requires sporozoite egress from the capsule (excystation), but this process remains poorly understood. In this study, we fused the parasite-encoded capsule protein Cap380 with green fluorescent protein in a transgenic P. berghei line, allowing live fluorescence imaging of capsules throughout sporogony and sporozoite excystation. The results show that capsules progressively weaken during sporulation ultimately resulting in sporozoite exit through small holes. Prior to formation of the holes, local thinning of the capsule was observed. Our findings support an excystation model based on local, rather than global, weakening of the capsule likely facilitated by local re-orientation of sporozoites and apical secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.