Abstract

The efficacy of sulfadoxine/pyrimethamine (S/P) in treatment of uncomplicated falciparum malaria in Africa is increasingly compromised by development of resistance. The occurrence of active site mutations in the Plasmodium falciparum gene sequences coding for dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) is known to confer resistance to pyrimethamine and sulfadoxine. This study investigated the occurrence of these mutations in infected blood samples taken from Ugandan children before treatment with S/P and their relationship to parasite breakthrough by day 7. The results confirm the occurrence of mutations in DHFR and DHPS that were significantly selected under S/P pressure at day 7: a combination of alleles 51-isoleucine and 108-asparagine in DHFR, and 436-serine, 437-alanine, 540-lysine and 581-alanine in DHPS, appears to play a major role in the development of in vivo resistance in P. falciparum strains against S/P. Therefore, earlier results derived from isolates from hyperendemic areas in Tanzania were confirmed by this investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.